If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2)=G^2-4G
We move all terms to the left:
(2)-(G^2-4G)=0
We get rid of parentheses
-G^2+4G+2=0
We add all the numbers together, and all the variables
-1G^2+4G+2=0
a = -1; b = 4; c = +2;
Δ = b2-4ac
Δ = 42-4·(-1)·2
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{6}}{2*-1}=\frac{-4-2\sqrt{6}}{-2} $$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{6}}{2*-1}=\frac{-4+2\sqrt{6}}{-2} $
| 5x-20=12x+80 | | -2m=-4m+8 | | 3x-42.5=70 | | a/5+8=8 | | Z^4+4z-1=0 | | -240=-20n | | 123+g=132 | | X^3-6x^2-10+60=0 | | 1+k/14=2 | | 1/2(2x+2)=9-7 | | -24x=-12x | | (13x+5)=(18x-5) | | 4/h=16/28 | | 10+3x=6x-5 | | A(n)=-2n+1 | | -7z-2(2z+6)=-12-11z | | (x-4)+(4x+16)+x=(x-4)+(4x+16)+x | | 18=-3p | | 37-5x=-13 | | 3/2p=p+17 | | -8+t=43 | | 10+6h=40 | | 10+6h=52 | | 1/3x+20=5 | | 6b+(8-3b)=35 | | 74=3x+1 | | 2^(x/3)-80=0 | | 28-5x=63 | | 5a-2=23a= | | 6^x/3=30 | | 5/2x+1/2x=99/2x | | 5w+5-w=4w-4+9 |